Entrer un problème...
Mathématiques de base Exemples
Étape 1
Pour diviser par une fraction, multipliez par sa réciproque.
Étape 2
Étape 2.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 2.1.1
Factorisez à partir de .
Étape 2.1.2
Réécrivez comme plus
Étape 2.1.3
Appliquez la propriété distributive.
Étape 2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 2.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 3
Étape 3.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 3.1.1
Factorisez à partir de .
Étape 3.1.2
Réécrivez comme plus
Étape 3.1.3
Appliquez la propriété distributive.
Étape 3.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 3.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 3.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 3.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 4
Étape 4.1
Factorisez à partir de .
Étape 4.2
Factorisez à partir de .
Étape 4.3
Factorisez à partir de .
Étape 5
Étape 5.1
Réécrivez comme .
Étape 5.2
Réécrivez comme .
Étape 5.3
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 5.4
Multipliez par .
Étape 6
Étape 6.1
Annulez le facteur commun de .
Étape 6.1.1
Factorisez à partir de .
Étape 6.1.2
Annulez le facteur commun.
Étape 6.1.3
Réécrivez l’expression.
Étape 6.2
Multipliez par .
Étape 6.3
Annulez le facteur commun à et .
Étape 6.3.1
Remettez les termes dans l’ordre.
Étape 6.3.2
Annulez le facteur commun.
Étape 6.3.3
Réécrivez l’expression.
Étape 6.4
Remettez dans l’ordre.
Étape 6.4.1
Déplacez à gauche de .
Étape 6.4.2
Remettez les facteurs dans l’ordre dans .